

LM3700/LM3701 Microprocessor Supervisory Circuit with Low Line Output

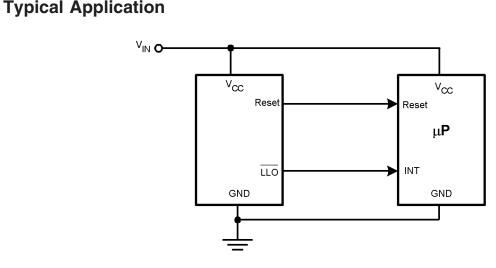
General Description

The LM3700/LM3701 series of microprocessor supervisory circuits provide the maximum flexibility for monitoring power supplies and battery controlled functions in systems without backup batteries. The LM3700/LM3701 series are available in a 9-bump micro SMD package.

Built-in features include the following:

Reset: Reset is asserted during power-up, power-down, and brownout conditions. $\overline{\text{RESET}}$ is guaranteed down to V_{CC} of 1.0V.

Low Line Output: This early power failure warning indicator goes low when the supply voltage drops to a value which is 2% higher than the reset threshold voltage.


Features

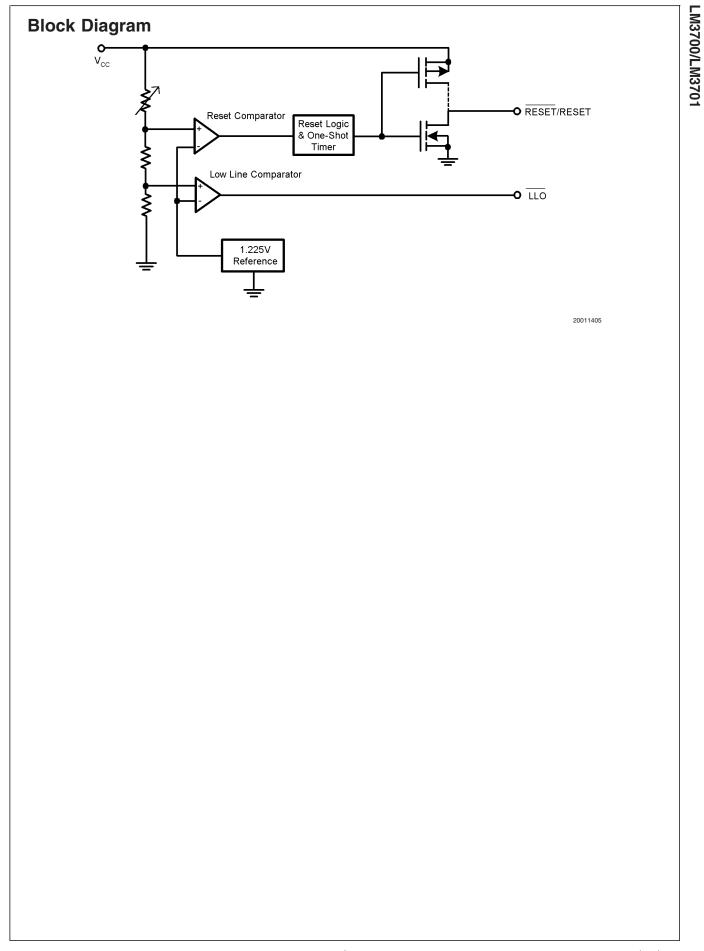
- Standard Reset Threshold voltage: 3.08V
- Custom Reset Threshold voltages: For other voltages between 2.2V and 5.0V in 10mV increments, contact National Semiconductor Corp.

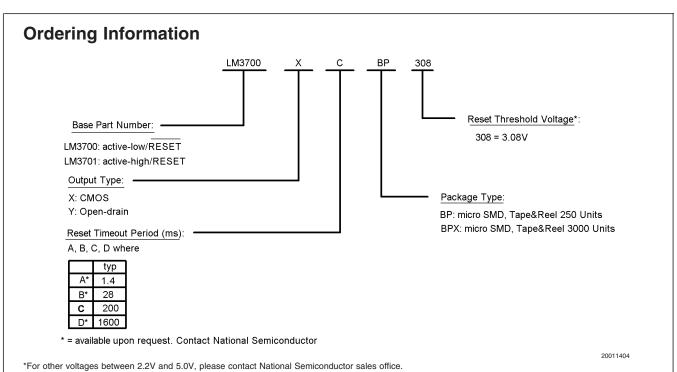
- No external components required
- RESET (LM3700) or RESET (LM3701) outputs
- Precision supply voltage monitor
- Factory programmable Reset Timeout Delay
- Available in micro SMD package for minimum footprint
- ±0.5% Reset threshold accuracy at room temperature
- ±2% Reset threshold accuracy over temperature extremes
- Reset assertion down to 1V V_{CC} (RESET option only)
- 28 µA V_{CC} supply current

Applications

- Embedded Controllers and Processors
- Intelligent Instruments
- Automotive Systems
- Critical µP Power Monitoring

20011403


Connection Diagram


Top View (looking from the coating side) micro SMD 9 Bump Package BPA09

∵ Reset	Ċ V _{cc}	S S	1
© NC	Ċ NC	C NC	2
	C GND	C NC	3
С	В	А	
		20011	401

Pin Descriptions

Bump No.	Name	Function
B1	V _{cc}	Power Supply input.
C1	RESET	Reset Logic Output. Pulses low for t_{RP} (Reset Timeout Period) when triggered, and stays low whenever V_{CC} is below the reset threshold or when \overline{MR} is below V_{MRT} . It remains low for t_{RP} after either V_{CC} rises above the reset threshold, or after \overline{MR} input rises above V_{MRT} (LM3700 only).
	RESET	Reset Logic Output. RESET is the inverse of RESET (LM3701 only).
C3	LLO	Low-Line Logic Output. Early Power-Fail warning output. Low when V_{CC} falls below V_{LLOT} (Low-Line Output Threshold). This output can be used to generate an NMI (Non-Maskable Interrupt) to provide an early warning of imminent power-failure.
B3	GND	Ground reference for all signals.
A1, A2, A3, C2	NC	No Connect.
B2	NC	No Connect. Test input used at factory only. Leave floating.

To other voltages between 2.2 v and 3.0 v, please contact National Semiconductor sale

LM3700/LM3701

Part Number	Output	Reset Timeout Period	Package Marking
LM3700XBBP-270	totem-pole	28ms	%%IE
LM3700XBBPX-270	totem-pole	28ms	%%IE
LM3700XCBP-290	totem-pole	200ms	%%123
LM3700XCBPX-290	totem-pole	200ms	%%123
LM3700XCBP-308	totem-pole	200ms	%%I0
LM3700XCBPX-308	totem-pole	200ms	%%I0
LM3701XCBP-308	totem-pole	200ms	%%I1
LM3701XCBPX-308	totem-pole	200ms	%%I1
LM3700XBBP-420	totem-pole	28ms	%%IF
LM3700XBBPX-420	totem-pole	28ms	%%IF
9/9/ is the detected and will your with time	•		

%% is the datecode and will vary with time.

Table Of Functions

Part Number	Active Low Reset	Active High Reset	Output (X = totem-pole) (Y = open-drain)	Reset Timeout Period	Low Line Output
LM3700	х		X, Y*	Customized	х
LM3701		х	Х	Customized	х

* = available upon request. Contact National

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power	Dissipation
	•

(Note 3)

LM3700/LM3701

Operating Ratings (Note 1)

Temperature Range

 $-40^{\circ}C \leq T_{J} \leq 85^{\circ}C$

Supply Voltage (V _{CC})	-0.3V to 6.0V
All Other Inputs	–0.3V to V _{CC} + 0.3V
ESD Ratings (Note 2)	
Human Body Model	1.5kV
Machine Model	150V

LM3700/LM3701 Series Electrical Characteristics

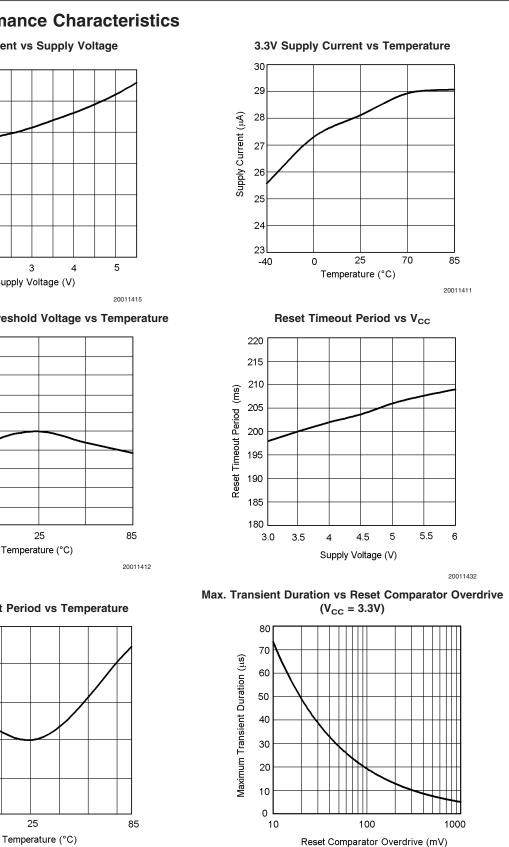
Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
POWER S	UPPLY					
V _{cc}	Operating Voltage	LM3700	1.0		5.5	- V
	Range: V _{CC}	LM3701	1.2		5.5	
I _{CC}	V _{CC} Supply Current	All inputs = V_{CC} ; all outputs floating		28	50	μA
RESET TH	RESHOLD					
V _{RST}	Reset Threshold	V _{CC} falling	-0.5		+0.5	
			-2	V _{RST}	+2	%
		V_{CC} falling: $T_A = 0^{\circ}C$ to $70^{\circ}C$	-1.5] [+1.5	7
V _{RSTH}	Reset Threshold Hysteresis			0.0032•V _{RST}		mV
t _{RP}	Reset Timeout	Reset Timeout Period = A	1	1.4	2	
	Period	Reset Timeout Period = B	20	28	40	
		Reset Timeout Period = C	140	200	280	ms
		Reset Timeout Period = D	1120	1600	2240	
t _{RD}	V _{CC} to Reset Delay	V _{CC} falling at 1mV/µs		20		μs
RESET (LI	W3701)					
V _{OL}	V _{OL} RESET	V _{CC} > 2.25V, I _{SINK} = 900µA			0.3	
		$V_{\rm CC} > 2.7V, I_{\rm SINK} = 1.2mA$			0.3	V
		$V_{\rm CC} > 4.5V, I_{\rm SINK} = 3.2mA$			0.4	1
V _{OH}	RESET	$V_{CC} > 1.2V, I_{SOURCE} = 50\mu A$	0.8 V _{cc}			
		$V_{CC} > 1.8V$, $I_{SOURCE} = 150\mu A$	0.8 V _{cc}			1
		$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{cc}			V
		$V_{CC} > 2.7V, I_{SOURCE} = 500 \mu A$	0.8 V _{cc}			1
		$V_{\rm CC} > 4.5V, I_{\rm SOURCE} = 800\mu A$	V _{cc} – 1.5V			1
I _{LKG}	Output Leakage	$V_{\text{BESET}} = 5.5V$			1.0	μA
	Current					
RESET (LI	W3700)					
V _{OL}	RESET	$V_{CC} > 1.0V, I_{SINK} = 50\mu A$			0.3	
		$V_{CC} > 1.2V, I_{SINK} = 100\mu A$			0.3	
		V _{CC} > 2.25V, I _{SINK} = 900μA			0.3	1
		$V_{\rm CC} > 2.7V, I_{\rm SINK} = 1.2mA$			0.3	٦.,
		$V_{\rm CC} > 4.5 V, I_{\rm SINK} = 3.2 mA$			0.4	- V
V _{OH}	RESET	$V_{\rm CC} > 2.25V, I_{\rm SOURCE} = 300\mu A$	0.8 V _{cc}			1
0		$V_{CC} > 2.7V, I_{SOURCE} = 500\mu A$	0.8 V _{cc}			1
		$V_{CC} > 4.5V, I_{SOURCE} = 800\mu A$	V _{cc} – 1.5V			1

LM3700/LM3701 Series Electrical Characteristics (Continued)

Limits in the standard typeface are for $T_J = 25^{\circ}C$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2V$ to 5.5V.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LLO		•				
V _{OL}	LLO Output	$V_{\rm CC} > 2.25 V, I_{\rm SINK} = 900 \mu A$			0.3	
	Voltage	$V_{\rm CC}$ > 2.7V, $I_{\rm SINK}$ = 1.2mA			0.3	1
		$V_{\rm CC}$ > 4.5V, $I_{\rm SINK}$ = 3.2mA			0.4	V
V _{OH}		$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{cc}			
		$V_{CC} > 2.7V$, $I_{SOURCE} = 500\mu A$	0.8 V _{cc}]
		$V_{CC} > 4.5V$, $I_{SOURCE} = 800\mu A$	V _{cc} – 1.5V			1
LLO OUTP	TUT		· ·			
V _{llot}	LLO Output		1.01•V _{RST}	1.02•V _{RST}	1.03•V _{RST}	V
	Threshold					
	$(V_{LLO} - V_{RST}, V_{CC})$ falling)					
V _{LLOTH}	Low-Line			0.0032•V _{RST}		mV
	Comparator					
	Hysteresis					
t _{CD}	Low-Line	V _{CC} falling at 1mV/µs		20		μs
	Comparator Delay					

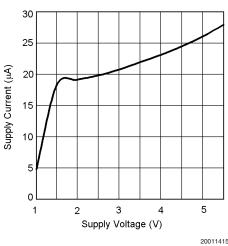

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed conditions.

Note 2: The Human Body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

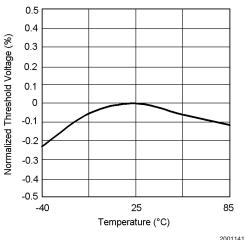
Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{J-A} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using:

$$P(MAX) = \frac{T_J(MAX) - T_A}{\theta_{J-A}}$$

Where the value of $\theta_{J\text{-}A}$ for the micro SMD package is 220°C/W.


20011410

LM3700/LM3701


 $V_{\rm RST}$ - $V_{\rm CC}$ 20011416

Typical Performance Characteristics

Supply Current vs Supply Voltage

Normalized Reset Threshold Voltage vs Temperature

Reset Timeout Period vs Temperature

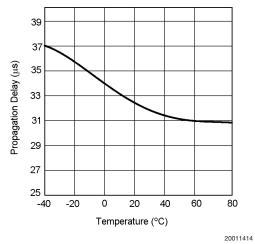
215

210

205

200

195


190

-40

Reset Timeout Period (ms)

Typical Performance Characteristics (Continued)

Low-Line Comparator Propagation Delay vs Temperature

Circuit Information

RESET OUTPUT

The Reset input of a μP initializes the device into a known state. The LM3700/LM3701 microprocessor supervisory circuits assert a forced reset output to prevent code execution errors during power-up, power-down, and brownout conditions.

RESET is guaranteed valid for $V_{CC} > 1V$. Once V_{CC} exceeds the reset threshold, an internal timer maintains the output for the reset timeout period. After this interval, reset goes high. The LM3700 offers an active-low RESET; The LM3701 offers an active-high RESET.

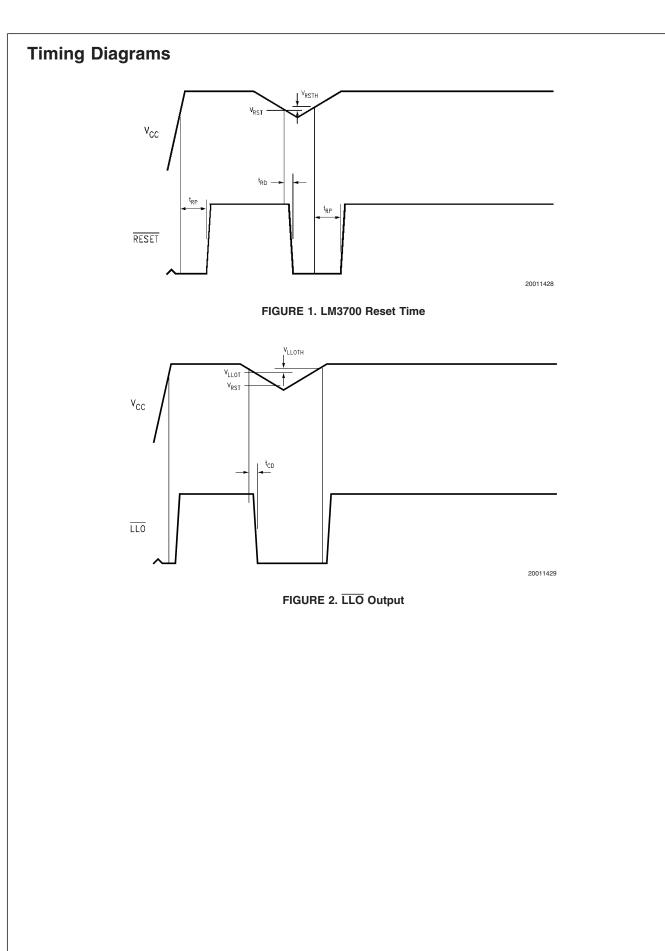
Any time V_{CC} drops below the reset threshold (such as during a brownout), the reset activates. When V_{CC} again rises above the reset threshold, the internal timer starts. Reset holds until V_{CC} exceeds the reset threshold for longer than the reset timeout period. After this time, reset releases.

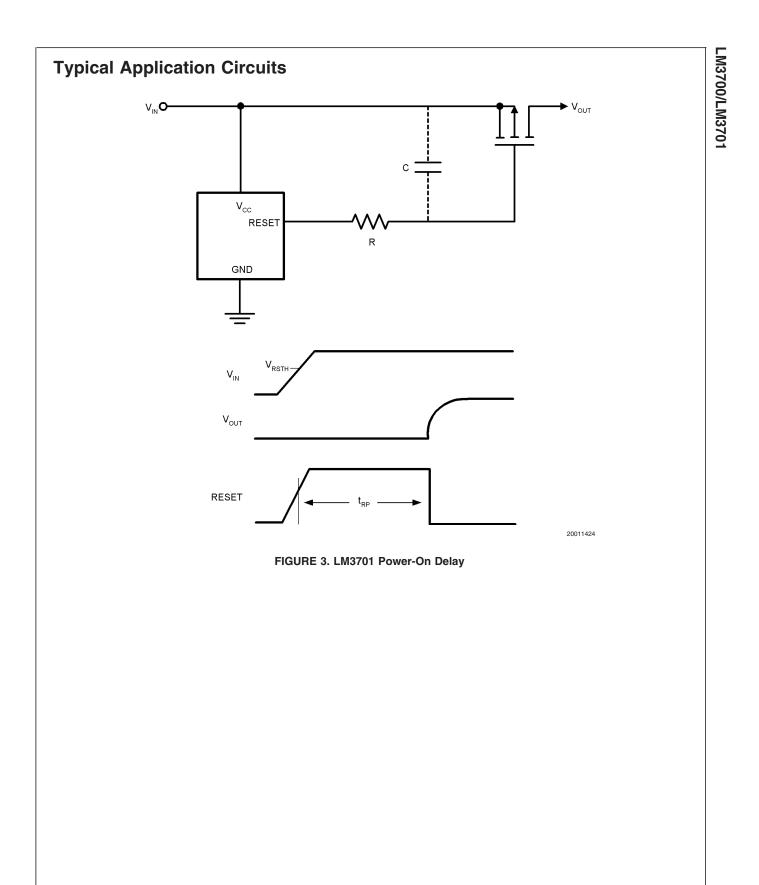
RESET THRESHOLD

The LM3700/LM3701 family is available with a reset voltage of 3.08V. Other reset thresholds in the 2.20V to 5.0V range, in steps of 10 mV, are available; contact National Semiconductor for details.

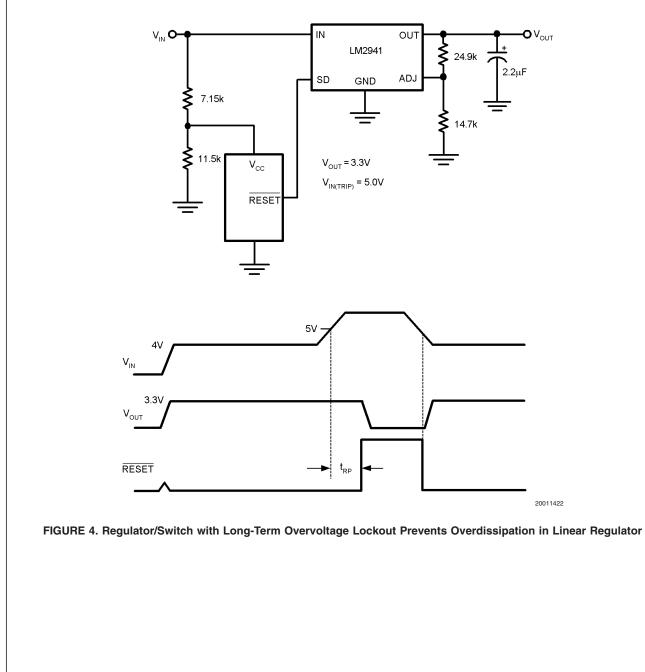
LOW-LINE OUTPUT (LLO)

The low-line output comparator is typically used to provide a non-maskable interrupt to a μP when V_{CC} begins falling. \overline{LLO} monitors V_{CC} and goes low when V_{CC} falls below V_{LLOT} (typically 1.02 • V_{RST}) with hysteresis of 0.0032 • V_{RST} .

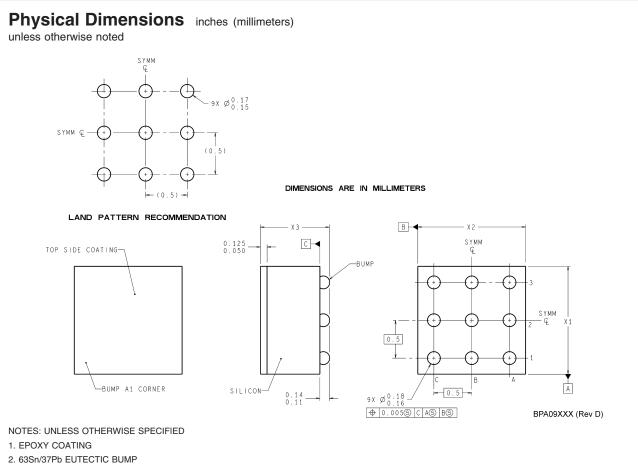

SPECIAL PRECAUTIONS FOR THE MICRO SMD PACKAGE


As with most integrated circuits, the LM3700 and LM3701 are sensitive to exposure from visible and infrared (IR) light radiation. Unlike a plastic encapsulated IC, the micro SMD package has very limited shielding from light, and some sensitivity to light reflected from the surface of the PC board or long wavelength IR entering the die from the side may be experienced. This light could have an unpredictable affect on the electrical performance of the IC. Care should be taken to shield the device from direct exposure to bright visible or IR light during operation.

MICRO SMD MOUNTING


The micro SMD package requires specific mounting techniques which are detailed in National Semiconductor Application Note AN-1112. Referring to the section *Surface Mount Technology (SMT) Assembly Considerations*, it should be noted that the pad style which must be used with the 9-pin package is the NSMD (non-solder mask defined) type.

For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.



Typical Application Circuits (Continued)

LM3700/LM3701

3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.

4. PIN 1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION. REMAINING PINS ARE NUMBERED COUNTER CLOCKWISE.

5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.

6.NO JEDEC REGISTRATION AS OF AUG.1999.

9 bump micro SMD Package NS Package Number BPA09FFB The dimensions of X1, X2 and X3 are given below X1 = 1.412mm X2 = 1.412mm X3 = 0.850mm

LIFE SUPPORT POLICY

Support Center

www.national.com

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconductor Americas Customer Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: new.feedback@nsc.com Email: europe.support@nsc.com Tel: 1-800-272-9959 Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.